Lesson 4: Fundamantals of Visual Analytics

Dr. Kam Tin Seong Assoc. Professor of Information Systems

School of Computing and Information Systems, Singapore Management University

2020-01-20 (updated: 2022-05-04)

What will you learn from this lesson?

- Visual Analytics for Knowledge Discovery
- Visual Analytics Approach for Statistical Testing
- Visual Analytics for Building Better Models
- Visualising Uncertainty
- Variation and Its Discontents

Visually Analytics for Knowledge Discovery

Motivation: To combine data visualisation and statistical modeling

Visual Data Exploration

Feedback loop

Visual Statistical Testing

To provide alternative statistical inference methods by default.

OF SOCIAL PSYCHOLOGY

Delacre, M., et al (2017). Why Psychologists Should by Default Use Welch's *t*-test Instead of Student's *t*-test. *International Review of Social Psychology*, 30(1), 92–101, DOI: https://doi.org/10.5334/irsp.82

Delacre, M., et al. (2019). Taking Parametric Assumptions Seriously: Arguments for the Use of Welch's *F*-test instead of the Classical *F*-test in One-Way ANOVA. *International Review of Social Psychology*, 32(1): 13, 1–12. DOI: https://doi.org/10.5334/irsp.198

RESEARCH ARTICLE

Why Psychologists Should by Default Use Welch's *t*-test Instead of Student's *t*-test

Marie Delacre*, Daniël Lakens⁺ and Christophe Leys*

When comparing two independent groups, psychology researchers commonly use Student's *t*-tests. Assumptions of normality and homogeneity of variance underlie this test. More often than not, when these conditions are not met, Student's *t*-test can be severely biased and lead to invalid statistical inferences. Moreover, we argue that the assumption of equal variances will seldom hold in psychological research, and choosing between Student's *t*-test and Welch's *t*-test based on the outcomes of a test of the equality of variances often fails to provide an appropriate answer. We show that the Welch's *t*-test provides a better control of Type 1 error rates when the assumption of homogeneity of variance is not met, and it loses little robustness compared to Student's *t*-test when the assumptions are met. We argue that Welch's *t*-test should be used as a default strategy.

RESEARCH ARTICLE

Taking Parametric Assumptions Seriously: Arguments for the Use of Welch's *F*-test instead of the Classical *F*-test in One-Way ANOVA

Marie Delacre*, Christophe Leys*, Youri L. Mora* and Daniël Lakens*

Student's *t*-test and classical *F*-test ANOVA rely on the assumptions that two or more samples are independent, and that independent and identically distributed residuals are normal and have equal variances between groups. We focus on the assumptions of normality and equality of variances, and argue that these assumptions are often unrealistic in the field of psychology. We underline the current lack of attention to these assumptions through an analysis of researchers' practices. Through Monte Carlo simulations, we illustrate the consequences of performing the classic parametric *F*-test for ANOVA when the test assumption of equal variances, the classic *F*-test can yield severely biased results and lead to invalid statistical inferences. We examine two common alternatives to the *F*-test, namely the Welch's ANOVA (*W*-test) and the Brown-Forsythe test (*F**-test). Our simulations show that under a range of realistic scenarios, the *W*-test is a better alternative and we therefore recommend using the *W*-test in SPSS and R. We summarize our conclusions in practical recommendations that researchers can use to improve their statistical practices.

Visual Statistical Testing

To follow best practices for statistical reporting.

• For all statistical tests reported in the plots, the default template abides by the APA gold standard for statistical reporting. For example, here are results from a robust t-test:

Two-sample means

Boxplot revealing the mean and distribution of two samples.

Boxplot with two-sample mean test

 $\log_{e}(BF_{01}) = 1.91, \ \hat{\delta}_{difference}^{\text{posterior}} = 1.39, \ Cl_{95\%}^{\text{HDI}}$ [-3.10, 5.34], $r_{Cauchy}^{\text{JZS}} = 0.71$

Visually-driven Correlation Analysis

Scatter plot showing the relationship between two continuous variables.

Scatter plot with significant test of correlation.

 $\log_{e}(\mathsf{BF}_{01}) = -183.55, \ \widehat{\rho}_{\mathsf{Pearson}}^{\mathsf{posterior}} = 0.83, \ \mathsf{Cl}_{95\%}^{\mathsf{HDI}} \ [0.79, \ 0.86], \ r_{\mathsf{beta}}^{\mathsf{JZS}} = 1.41$

Visually-driven Association (Independent) Analysis

Mosaic plot showing the association between two categorical variables.

Stacked bar chart with significant test of association.

 $\chi^2_{\text{Pearson}}(3) = 1.04, \, p = 0.79, \, \widehat{V}_{\text{Cramer}} = 0.00, \, \text{Cl}_{95\%}$ [0.00, 1.00], $n_{\text{obs}} = 322$

Visual Analytics Appraoch for Building Exploratory **Models**

Model Diagnostic: checking for multicolinearity:

Conventional statistical report

##	# Check for	r Multi	colli	neari	ty		
##							
##	Low Correla	ation					
##							
##		Term	n VIF	Incr	eased	SE Tol	erance
##		KM	1 1.46		1.	.21	0.68
##		Weight	: 1.41		1.	.19	0.71
##	Guarantee	_Period	l 1.04		1.	.02	0.97
##							
##	High Corre	lation					
##							
##	Term	VIF	Increa	ased	SE To	lerance	
##	Age_08_04	31.07		5.	57	0.03	
##	Mfg_Year	31.16		5.	58	0.03	

Visual Analytics approach

Variance Inflation Factor (VIF)

0

Age 08 04

Collinearity Higher bars (>5) indicate potential collinearity issues 30 20

KΜ

low (< 5) moderate (< 10) high (>= 10)

Mfg Year

Guarantee Period

Weight

Visual Analytics Appraoch for Building Exploratory Models

Model Diagnostic: Checking normality assumption

Model Diagnostic: Checking model for homogeneity of variances

Visual Analytics Appraoch for Building Exploratory Models

Analysing model parameters

Conventional statistical report

##	Coefficients:					
##		Estimate	Std. Error	t value P	r(> t)	
##	(Intercept)	-2.186e+03	9.722e+02	-2.248	0.0247 *	
##	Age_08_04	-1.195e+02	2.760e+00	-43.292	<2e-16 ***	
##	KM	-2.406e-02	1.201e-03	-20.042	<2e-16 ***	
##	Weight	1.972e+01	8.379e-01	23.533	<2e-16 ***	
##	Guarantee_Period	2.682e+01	1.261e+01	2.126	0.0336 *	
##						
##	Signif. codes: (9 '***' 0.00	91 '**' 0.01	. '*' 0.05	'.' 0.1 ' '	1
##						

Visual Analytics approach

Visualising Uncertainty

Why it is important?

 One of the most challenging aspects of data visualization is the visualization of uncertainty.

Proportion of resident potential entrants who preferred to work part-time by age group and sex, June 2019

Why one shouldn't use a bar graph, even if the data are normally distributed?

• It is not appropriate to displace average values on bars

Why Error bar failed?

• Each error bar is constructed using a 95% confidence interval of the mean.

Error bar on a dot plot

• Each error bar is constructed using a 95% confidence interval of the percentage.

Graphical methods for visualising uncertainty

Back to Statistics 101

Population and samples

• When drawing many samples from a population, it is possible to obtain a few with means that greatly differ from the population.

A reminder of the standard normal distribution

The standard error

The formulas of standard deviation and standard error

standard deviation
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

variance $= \sigma^2$
standard error $(\sigma_{\bar{x}}) = \frac{\sigma}{\sqrt{n}}$
where:
 \bar{x} = the sample's mean
 n = the sample size

Reference: Cairo, A. (2016) The Truthful Art, Chapter 11, New Riders

Calculating the confidence interval of a mean

Calculating the confidence interval of a percentage

Reference: Cairo, A. (2016) The Truthful Art, Chapter 11, New Riders

2-d graphical methods for visualising uncertainty Scatter plot with 95% confidence Scatter plot with 95% confidence ellipse intervals

intervals The relationship between english and maths marks 100-80-

Confidence band of a trend line

Variation and Its Discontents

Random and unfair comparisons

Reference: https://www.perceptualedge.com/articles/visual_business_intelligence/variation_and_its_discontents.pdf

Funnel plots to the rescue

Statistical details

Calculations:

Normality assumption

- Before plotting the graph, it is important to check if the values are conformed to normal distribution assumption.
- If the raw values are not conformed to normality assumption, they have to be transformed.

