
Hands-on Exercise 7: Modelling, Visualising
and Analysing Network Data with R

Dr. Kam Tin Seong
Assoc. Professor of Information Systems

School of Computing and Information Systems,
Singapore Management University

2020-7-4 (updated: 2022-05-24)

Overview
In this hands-on exercise, you will learn how to model, analyse and visualise network data
using R.

By the end of this hands-on exercise, you will be able to:

create graph object data frames, manipulate them using appropriate functions of dplyr,
lubridate, and tidygraph,
build network graph visualisation using appropriate functions of ggraph,
compute network geometrics using tidygraph,
build advanced graph visualisation by incorporating the network geometrics, and
build interactive network visualisation using visNetwork package.

2 / 45

In this hands-on exercise, four network data
modelling and visualisation packages will be installed
and launched. They are igraph, tidygraph, ggraph and
visNetwork. Beside these four packages, tidyverse
and lubridate, an R package specially designed to
handle and wrangling time data will be installed and
launched too.

The code chunk:

packages = c('igraph', 'tidygraph',

'ggraph', 'visNetwork',

'lubridate', 'clock',

'tidyverse', 'graphlayouts')

for(p in packages){

if(!require(p, character.only = T)){

 install.packages(p)

 }

library(p, character.only = T)

}

Getting Started
Installing and launching R packages

]

3 / 45

https://lubridate.tidyverse.org/

The Data
The data sets used in this hands-on exercise is from an oil exploration and extraction company. There are two data
sets. One contains the nodes data and the other contains the edges (also know as link) data.

The edges data
GAStech-email_edges.csv which consists of two weeks of 9063 emails correspondances
between 55 employees

4 / 45

The Data
The nodes data

GAStech_email_nodes.csv which consist of the names, department and title of the 55
employees.

5 / 45

Importing network data from files
In this step, you will import GAStech_email_node.csv and GAStech_email_edges.csv into
RStudio environment by using read_csv() of readr package.

GAStech_nodes <- read_csv("data/GAStech_email_node.csv")

GAStech_edges <- read_csv("data/GAStech_email_edge-v2.csv")

6 / 45

Reviewing the imported data
Next, we will examine the structure of the data frame using glimpse() of dplyr.

glimpse(GAStech_edges)

Rows: 9,063

Columns: 8

$ source <dbl> 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 26, 26, 26…

$ target <dbl> 41, 40, 51, 52, 53, 45, 44, 46, 48, 49, 47, 54, 27, 28, 29…

$ SentDate <chr> "6/1/2014", "6/1/2014", "6/1/2014", "6/1/2014", "6/1/2014"…

$ SentTime <time> 08:39:00, 08:39:00, 08:58:00, 08:58:00, 08:58:00, 08:58:0…

$ Subject <chr> "GT-SeismicProcessorPro Bug Report", "GT-SeismicProcessorP…

$ MainSubject <chr> "Work related", "Work related", "Work related", "Work rela…

$ sourceLabel <chr> "Sven.Flecha", "Sven.Flecha", "Kanon.Herrero", "Kanon.Herr…

$ targetLabel <chr> "Isak.Baza", "Lucas.Alcazar", "Felix.Resumir", "Hideki.Coc…

Warning: The output report of GAStech_edges above reveals that the SentDate is treated as "Character"" data type
instead of date data type. This is an error! Before we continue, it is important for us to change the data type of
SentDate �eld back to "Date"" data type.

7 / 45

Wrangling time
The code chunk below will be used to perform the changes.

GAStech_edges <- GAStech_edges %>%

 mutate(SendDate = dmy(SentDate)) %>%

 mutate(Weekday = wday(SentDate,

 label = TRUE,

 abbr = FALSE))

Things to learn from the code chunk above:

both dmy() and wday() are functions of lubridate package. lubridate is an R package that makes it easier to
work with dates and times.
dmy() transforms the SentDate to Date data type.
wday() returns the day of the week as a decimal number or an ordered factor if label is TRUE. The argument
abbr is FALSE keep the daya spells in full, i.e. Monday. The function will create a new column in the data.frame
i.e. Weekday and the output of wday() will save in this newly created �eld.
the values in the Weekday �eld are in ordinal scale.

8 / 45

http://127.0.0.1:6131/cran.r-project.org/web/packages/lubridate/vignettes/lubridate.html

Reviewing the revised date fields
Table below shows the data structure of the reformatted GAStech_edges data frame

Rows: 9,063

Columns: 10

$ source <dbl> 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 26, 26, 26…

$ target <dbl> 41, 40, 51, 52, 53, 45, 44, 46, 48, 49, 47, 54, 27, 28, 29…

$ SentDate <chr> "6/1/2014", "6/1/2014", "6/1/2014", "6/1/2014", "6/1/2014"…

$ SentTime <time> 08:39:00, 08:39:00, 08:58:00, 08:58:00, 08:58:00, 08:58:0…

$ Subject <chr> "GT-SeismicProcessorPro Bug Report", "GT-SeismicProcessorP…

$ MainSubject <chr> "Work related", "Work related", "Work related", "Work rela…

$ sourceLabel <chr> "Sven.Flecha", "Sven.Flecha", "Kanon.Herrero", "Kanon.Herr…

$ targetLabel <chr> "Isak.Baza", "Lucas.Alcazar", "Felix.Resumir", "Hideki.Coc…

$ SendDate <date> 2014-01-06, 2014-01-06, 2014-01-06, 2014-01-06, 2014-01-0…

$ Weekday <ord> Friday, Friday, Friday, Friday, Friday, Friday, Friday, Fr…

9 / 45

A close examination of GAStech_edges data.frame
reveals that it consists of individual e-mail �ow
records. This is not very useful for visualisation.

In view of this, we will aggregate the individual by
date, senders, receivers, main subject and day of the
week.

Things to learn from the code chunk above:

four functions from dplyr package are used. They
are: �lter(), group(), summarise(), and ungroup().
The output data.frame is called
GAStech_edges_aggregated.
A new �eld called Weight has been added in
GAStech_edges_aggregated.

The code chunk:

GAStech_edges_aggregated <- GAStech_edges %>%

 filter(MainSubject == "Work related") %>%

 group_by(source, target, Weekday) %>%

 summarise(Weight = n()) %>%

 filter(source!=target) %>%

 filter(Weight > 1) %>%

 ungroup()

Wrangling attributes

10 / 45

Reviewing the revised edges file
Table below shows the data structure of the reformatted GAStech_edges data frame

Rows: 1,372

Columns: 4

$ source <dbl> 1,…

$ target <dbl> 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,…

$ Weekday <ord> Sunday, Monday, Tuesday, Wednesday, Friday, Sunday, Monday, Tu…

$ Weight <int> 5, 2, 3, 4, 6, 5, 2, 3, 4, 6, 5, 2, 3, 4, 6, 5, 2, 3, 4, 6, 5,…

11 / 45

Creating network objects using tidygraph
In this section, you will learn how to create a graph data model by using tidygraph
package. It provides a tidy API for graph/network manipulation. While network data itself is
not tidy, it can be envisioned as two tidy tables, one for node data and one for edge data.
tidygraph provides a way to switch between the two tables and provides dplyr verbs for
manipulating them. Furthermore it provides access to a lot of graph algorithms with return
values that facilitate their use in a tidy work�ow.

Before getting started, you are advised to read these two articles:

Introducing tidygraph
tidygraph 1.1 – A tidy hope

12 / 45

https://www.data-imaginist.com/2017/introducing-tidygraph/
https://www.data-imaginist.com/2018/tidygraph-1-1-a-tidy-hope/

The tbl_graph object
Two functions of tidygraph package can be used to create network objects, they are:

tbl_graph() creates a tbl_graph network object from nodes and edges data.
as_tbl_graph() converts network data and objects to a tbl_graph network.

a node data.frame and an edge data.frame,
data.frame, list, matrix from base,
igraph from igraph,
network from network,
dendrogram and hclust from stats,
Node from data.tree,
phylo and evonet from ape, and
graphNEL, graphAM, graphBAM from graph (in Bioconductor).

13 / 45

https://tidygraph.data-imaginist.com/reference/tbl_graph.html
https://tidygraph.data-imaginist.com/reference/tbl_graph.html

The dplyr verbs in tidygraph
activate() verb from tidygraph serves as a switch between tibbles for nodes and edges.
All dplyr verbs applied to tbl_graph object are applied to the active tibble.

In the above the .N() function is used to gain access to the node data while manipulating
the edge data. Similarly .E() will give you the edge data and .G() will give you the
tbl_graph object itself.

14 / 45

Using tbl_graph() to build tidygraph data model.
In this section, you will use tbl_graph() of tinygraph package to build an tidygraph's network graph data.frame.

Before typing the codes, you are recommended to review to reference guide of tbl_graph()

GAStech_graph <- tbl_graph(nodes = GAStech_nodes,

 edges = GAStech_edges_aggregated,

 directed = TRUE)

15 / 45

https://tidygraph.data-imaginist.com/reference/tbl_graph.html

Reviewing the output tidygraph's graph object
GAStech_graph

A tbl_graph: 54 nodes and 1372 edges

#

A directed multigraph with 1 component

#

Node Data: 54 × 4 (active)

id label Department Title

<dbl> <chr> <chr> <chr>

1 1 Mat.Bramar Administration Assistant to CEO

2 2 Anda.Ribera Administration Assistant to CFO

3 3 Rachel.Pantanal Administration Assistant to CIO

4 4 Linda.Lagos Administration Assistant to COO

5 5 Ruscella.Mies.Haber Administration Assistant to Engineering Group Manag…

6 6 Carla.Forluniau Administration Assistant to IT Group Manager

… with 48 more rows

#

Edge Data: 1,372 × 4

from to Weekday Weight

<int> <int> <ord> <int>

1 1 2 Sunday 5

2 1 2 Monday 2

3 1 2 Tuesday 3

… with 1,369 more rows 16 / 45

Reviewing the output tidygraph's graph object
The output above reveals that GAStech_graph is a tbl_graph object with 54 nodes and
4541 edges.
The command also prints the �rst six rows of "Node Data" and the �rst three of "Edge
Data".
It states that the Node Data is active. The notion of an active tibble within a tbl_graph
object makes it possible to manipulate the data in one tibble at a time.

17 / 45

Changing the active object
The nodes tibble data frame is activated by default, but you can change which tibble data
frame is active with the activate() function. Thus, if we wanted to rearrange the rows in the
edges tibble to list those with the highest "weight" �rst, we could use activate() and then
arrange().

For example,

GAStech_graph %>%

 activate(edges) %>%

 arrange(desc(Weight))

Visit the reference guide of activate() to �nd out more about the function.

18 / 45

https://tidygraph.data-imaginist.com/reference/activate.html

Plotting Network Data with ggraph package
ggraph is an extension of ggplot2, making it easier to carry over basic ggplot skills to the
design of network graphs.

As in all network graph, there are three main aspects to a ggraph's network graph, they are:

nodes,
edges and
layouts.

For a comprehensive discussion of each of this aspect of graph, please refer to their
respective vignettes provided.

19 / 45

https://ggraph.data-imaginist.com/index.html
https://cran.r-project.org/web/packages/ggraph/vignettes/Nodes.html
http://127.0.0.1:6131/(https://cran.r-project.org/web/packages/ggraph/vignettes/Edges.html
https://cran.r-project.org/web/packages/ggraph/vignettes/Layouts.html

The code chunk below uses ggraph(), geom-edge_link()
and geom_node_point() to plot a network graph by
using GAStech_graph. Before your get started, it is
advisable to read their respective reference guide at
least once.

ggraph(GAStech_graph) +

 geom_edge_link() +

 geom_node_point()

Things to learn from the code chunk above:

The basic plotting function is ggraph(), which
takes the data to be used for the graph and the
type of layout desired. Both of the arguments for
ggraph() are built around igraph. Therefore,
ggraph() can use either an igraph object or a
tbl_graph object.

Plotting a basic network graph

20 / 45

https://ggraph.data-imaginist.com/reference/ggraph.html
https://ggraph.data-imaginist.com/reference/geom_edge_link.html
https://ggraph.data-imaginist.com/reference/geom_node_point.html

In this section, you will use theme_graph() to remove
the x and y axes. Before your get started, it is
advisable to read it's reference guide at least once.

g <- ggraph(GAStech_graph) +

 geom_edge_link(aes()) +

 geom_node_point(aes())

g + theme_graph()

Things to learn from the code chunk above:

ggraph introduces a special ggplot theme that
provides better defaults for network graphs than
the normal ggplot defaults. theme_graph(),
besides removing axes, grids, and border,
changes the font to Arial Narrow (this can be
overridden).
The ggraph theme can be set for a series of plots
with the set_graph_style() command run before
the graphs are plotted or by using theme_graph()
in the individual plots.

Changing the default network graph theme

21 / 45

https://ggraph.data-imaginist.com/reference/theme_graph.html

Furthermore, theme_graph() makes it easy to change
the coloring of the plot.

g <- ggraph(GAStech_graph) +

 geom_edge_link(aes(colour = 'grey50')) +

 geom_node_point(aes(colour = 'grey40'))

g + theme_graph(background = 'grey10',

 text_colour = 'white')

Changing the coloring of the plot

22 / 45

ggraph() support many layout for standard used,
they are: star, circle, nicely (default), dh, gem,
graphopt, grid, mds, spahere, randomly, fr, kk, drl and
lgl. Figures below and on the right show layouts
supported by ggraph().

Working with ggraph's layouts

23 / 45

The code chunks below will be used to plot the
network graph using Fruchterman and Reingold
layout.

g <- ggraph(GAStech_graph,

 layout = "fr") +

 geom_edge_link(aes()) +

 geom_node_point(aes())

g + theme_graph()

Thing to learn from the code chunk above:

layout argument is used to de�ne the layout to be
used.

Fruchterman and Reingold layout

24 / 45

In this section, you will colour each node by referring
to their respective departments.

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes()) +

 geom_node_point(aes(colour = Department,

 size = 3))

g + theme_graph()

Things to learn from the code chunks above:

geom_node_point is equivalent in functionality to
geo_point of ggplot2. It allows for simple plotting
of nodes in di�erent shapes, colours and sizes. In
the codes chnuks above colour and size are used.

Modifying network nodes

25 / 45

In the code chunk below, the thickness of the edges
will be mapped with the Weight variable.

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department),

 size = 3)

g + theme_graph()

Things to learn from the code chunks above:

geom_edge_link draws edges in the simplest way -
as straight lines between the start and end
nodes. But, it can do more that that. In the
example above, argument width is used to map
the width of the line in proportional to the Weight
attribute and argument alpha is used to
introduce opacity on the line.

Modifying edges

26 / 45

Creating facet graphs
Another very useful feature of ggraph is faceting. In visualising network data, this
technique can be used to reduce edge over-plotting in a very meaning way by spreading
nodes and edges out based on their attributes. In this section, you will learn how to use
faceting technique to visualise network data.

There are three functions in ggraph to implement faceting, they are:

facet_nodes() whereby edges are only draw in a panel if both terminal nodes are present
here,
facet_edges() whereby nodes are always drawn in al panels even if the node data contains
an attribute named the same as the one used for the edge facetting, and
facet_graph() faceting on two variables simultaneously.

27 / 45

http://127.0.0.1:6131/Hands-on_Ex08.html
https://ggraph.data-imaginist.com/reference/facet_edges.html
https://ggraph.data-imaginist.com/reference/facet_graph.html

In the code chunk below, facet_edges() is used. Before
getting started, it is advisable for you to read it's
reference guide at least once.

set_graph_style()

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department),

 size = 2)

g + facet_edges(~Weekday)

Working with facet_edges()

28 / 45

https://ggraph.data-imaginist.com/reference/facet_edges.html

The code chunk below uses theme() to change the
position of the legend.

set_graph_style()

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department),

 size = 2) +

 theme(legend.position = 'bottom')

g + facet_edges(~Weekday)

Working with facet_edges()

29 / 45

The code chunk below adds frame to each graph.

set_graph_style()

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department),

 size = 2)

g + facet_edges(~Weekday) +

 th_foreground(foreground = "grey80",

 border = TRUE) +

 theme(legend.position = 'bottom')

The code chunk below adds frame to each graph.
A framed facet graph

30 / 45

In the code chunkc below, facet_nodes() is used. Before
getting started, it is advisable for you to read it's
reference guide at least once.

set_graph_style()

g <- ggraph(GAStech_graph,

 layout = "nicely") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department),

 size = 2)

g + facet_nodes(~Department)+

 th_foreground(foreground = "grey80",

 border = TRUE) +

 theme(legend.position = 'bottom')

In the code chunk below, facet_nodes() is used.
Working with facet_nodes()

31 / 45

https://ggraph.data-imaginist.com/reference/facet_nodes.html

Network Metrics Analysis
Computing centrality indices
Centrality measures are a collection of statistical indices use to describe the relative important of the actors are to a
network. There are four well-known centrality measures, namely: degree, betweenness, closeness and eigenvector.
It is beyond the scope of this hands-on exercise to cover the principles and mathematics of these measure here.
Students are encouraged to refer to Chapter 7: Actor Prominence of A User's Guide to Network Analysis in R to
gain better understanding of theses network measures.

g <- GAStech_graph %>%

 mutate(betweenness_centrality = centrality_betweenness()) %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department,

 size=betweenness_centrality))

g + theme_graph()

Things to learn from the code chunk above:

mutate() of dplyr is used to perform the computation.
the algorithm used, on the other hand, is the centrality_betweenness() of tidygraph. 32 / 45

Network graph with network measures

33 / 45

Visualising network metrics
It is important to note that from ggraph v2.0 onward tidygraph algorithms such as centrality measures can be
accessed directly in ggraph calls. This means that it is no longer necessary to precompute and store derived node
and edge centrality measures on the graph in order to use them in a plot.

g <- GAStech_graph %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = Department,

 size = centrality_betweenness()))

g + theme_graph()

34 / 45

Visualising network metrics

35 / 45

Visualising Community
tidygraph package inherits many of the community detection algorithms imbedded into igraph and makes them
available to us, including Edge-betweenness (group_edge_betweenness), Leading eigenvector (group_leading_eigen),
Fast-greedy (group_fast_greedy), Louvain (group_louvain), Walktrap (group_walktrap), Label propagation
(group_label_prop), InfoMAP (group_infomap), Spinglass (group_spinglass), and Optimal (group_optimal). Some
community algorithms are designed to take into account direction or weight, while others ignore it. Use this link to
�nd out more about community detection functions provided by tidygraph,

In the code chunk below group_edge_betweenness() is used.

g <- GAStech_graph %>%

 mutate(community = as.factor(group_edge_betweenness(weights = Weight, directed = TRUE))) %>%

 ggraph(layout = "fr") +

 geom_edge_link(aes(width=Weight),

 alpha=0.2) +

 scale_edge_width(range = c(0.1, 5)) +

 geom_node_point(aes(colour = community))

g + theme_graph()

36 / 45

https://tidygraph.data-imaginist.com/reference/group_graph.html

Visualising Community
The output network graph with community coloured

37 / 45

Building Interactive Network Graph with visNetwork
visNetwork() is a R package for network visualization, using vis.js javascript library.

visNetwork() function uses a nodes list and edges list to create an interactive graph.

The nodes list must include an "id" column, and the edge list must have "from" and
"to" columns.
The function also plots the labels for the nodes, using the names of the actors from
the "label" column in the node list.

The resulting graph is fun to play around with.

You can move the nodes and the graph will use an algorithm to keep the nodes
properly spaced.
You can also zoom in and out on the plot and move it around to re-center it.

38 / 45

http://datastorm-open.github.io/visNetwork/
http://visjs.org/

Data preparation
Before we can plot the interactive network graph, we need to prepare the data model by using the code chunk
below.

GAStech_edges_aggregated <- GAStech_edges %>%

 left_join(GAStech_nodes, by = c("sourceLabel" = "label")) %>%

 rename(from = id) %>%

 left_join(GAStech_nodes, by = c("targetLabel" = "label")) %>%

 rename(to = id) %>%

 filter(MainSubject == "Work related") %>%

 group_by(from, to) %>%

 summarise(weight = n()) %>%

 filter(from!=to) %>%

 filter(weight > 1) %>%

 ungroup()

39 / 45

The code chunk below will be used to plot an
interactive network graph by using the data prepared.

visNetwork(GAStech_nodes,

 GAStech_edges_aggregated)

Plotting the first interactive network graph

40 / 45

In the code chunk below, Fruchterman and
Reingold layout is used.

visNetwork(GAStech_nodes,

 GAStech_edges_aggregated) %>%

 visIgraphLayout(layout = "layout_with_fr")

Visit Igraph to �nd out more about visIgraphLayout's
argument.

Working with layout

41 / 45

http://datastorm-open.github.io/visNetwork/igraph.html

visNetwork() looks for a �eld called "group" in the
nodes object and colour the nodes according to the
values of the group �eld.

The code chunk below rename Department �eld to
group.

GAStech_nodes <- GAStech_nodes %>%

 rename(group = Department)

Working with visual attributes - Nodes

42 / 45

When we rerun the code chunk below, visNetwork
shades the nodes by assigning unique colour to each
category in the group �eld.

visNetwork(GAStech_nodes,

 GAStech_edges_aggregated) %>%

 visIgraphLayout(layout = "layout_with_fr") %>

 visLegend() %>%

 visLayout(randomSeed = 123)

Working with visual attributes - Nodes

43 / 45

In the code run below visEdges() is used to symbolise
the edges.

The argument arrows is used to de�ne where to
place the arrow.
The smooth argument is used to plot the edges
using a smooth curve.

visNetwork(GAStech_nodes,

 GAStech_edges_aggregated) %>%

 visIgraphLayout(layout = "layout_with_fr") %>

 visEdges(arrows = "to",

 smooth = list(enabled = TRUE,

 type = "curvedCW")) %>

 visLegend() %>%

 visLayout(randomSeed = 123)

Visit Option to �nd out more about visEdges's
argument.

Working with visual attributes - Edges

44 / 45

http://datastorm-open.github.io/visNetwork/edges.html

In the code chunk below, visOptions() is used to
incorporate interactivity features in the data
visualisation.

The argument highlightNearest highlights nearest
when clicking a node.
The argument nodesIdSelection adds an id node
selection creating an HTML select element.

visNetwork(GAStech_nodes,

 GAStech_edges_aggregated) %>%

 visIgraphLayout(layout = "layout_with_fr") %>

 visOptions(highlightNearest = TRUE,

 nodesIdSelection = TRUE) %>%

 visLegend() %>%

 visLayout(randomSeed = 123)

Visit Option to �nd out more about visOption's
argument.

Select by id
Interactivity

45 / 45

http://datastorm-open.github.io/visNetwork/options.html

